boehlerit

Gewinderollsysteme

Rollen neu definiert

Boehlerit erweitert sein Produktportfolio und hat mit der Firma Adam Rollsysteme GmbH einen kompetenten Partner für die Beratung und Anwendung von Profil- und Gewinderollköpfen sowie für die Auslegung kundenspezifischer Sonderanfertigungen von Axial- und Tangential-Rollwerkzeugen an der Seite.

In der Luft- und Raumfahrtindustrie beispielsweise sind spanende Bearbeitungsverfahren durch die damit einhergehende Zerstörung der Walzfasern nicht erlaubt. Durch das Rollen wird das gewünschte Profil über die Spannungs-Dehnungs-Grenze hinaus in den Werkstoff geformt.

Die Adam Axial- und Adam Tangential-Rollsysteme von Boehlerit bieten nicht nur kürzeste Zykluszeiten, hohe Standzeiten, perfekte Oberflächenqualitäten und höchste Präzision, sondern sind auch Werkstoff sparend und deshalb äußerst wirtschaftlich. Die Axial-Rollsysteme decken einen Arbeitsbereich von 1,4 bis 100 mm ab und kommen vor allem auf Dreh- und Fräsbearbeitungszentren zur Bearbeitung von Gewinden und Profilen zum Einsatz.

Die Adam Tangential-Rollsysteme wiederum eignen sich hervorragend zur Fertigung auch extremer Kurzgewinde, Gewinde mit sehr kurzen Ausläufen, sowie Rändelungen und Glättungen.

Der Arbeitsbereich liegt bei 1,6 bis 42 mm bei einer Rollenbreite von 15,5 bis 31 mm. Zu jedem Adam Tangential-Rollsystem liefert Boehlerit individuell angepasste Rollkopfhalter zur Aufnahme des Rollkopfes auf der Werkzeugmaschine. Mit diesen Adam Rollsystemen bietet Boehlerit weltweit ein breites Spektrum an Werkzeuglösungen an, mit welchen die meisten Bearbeitungsfälle abgedeckt werden können.

BOEHLERIT Kapfenberg in der Steiermark/Österreich

Technische Änderungen und Druckfehler vorbehalten.

Adam Axial-Rollsysteme

Der breite Arbeitsbereich der einzelnen Rollkopftypen, wird durch den einfachen und schnellen Austausch der Rollen ermöglicht. In weiterer Folge können andere Kaltverformungen wie Glätten, Rändeln und Sicken durch einrollen realisiert werden. Die Axialrollköpfe können stillstehend oder umlaufend eingesetzt werden. Geschlossen wird der Axialkopf durch radiales Verdrehen am Schließgriff bzw. optional durch eine automatische Schließeinrichtung.

Der Rollkopf öffnet durch stoppen des Vorschubes, die Rollen geben das Werkstück frei.

Je nach Ausführung besitzt der Axialrollkopf zwei, drei oder in einigen Fällen auch sechs Gewinderollen, diese werden Satzweise eingesetzt. Die Axial- Rollsysteme können für Kurz- und Langgewinde eingesetzt werden.

Hochpräzise Formrollen:

Als Formrollen dienen Gewinderollen, welche in Durchmesser, Form und Steigung an das zu erzeugende Profil angepasst sind.

Für unterschiedliche Maschinen stehen unterschiedliche Schaftvarianten zur Verfügung.

Rechts- und Linksgewinde sind ebenso herstellbar wie Regel- und Feingewinde, Rohr-, Trapez- und Sondergewinde.

Vorteile:

- Breite Arbeitsbereiche.
- Umlaufend und stillstehend für den Einsatz auf Bearbeitungszentren, Drehmaschinen, Rundtaktautomaten und Sondermaschinen.
- Bearbeitung von Bauteilen mit langen Gewinden.
- Selbstöffnend durch Vorschubstopp für berührungsfreien Rücklauf.
- Reproduzierbare Fertigungsergebnisse

Ein breites Rollenprogramm steht zur Verfügung. Die Maßhaltigkeit der gerollten Gewinde ist bei Werkstoffen bis max. 1400 N/mm² Zugfestigkeit gewährleistet.

Gewinderollkopf stillstehend:

Der Adam Gewinderollkopf in der Bauart stillstehend ist für den Einsatz mit umlaufenden Werkstücken bestimmt.

Das Öffnen am Gewindeende kann mittels Vorschubstopp der Maschine oder durch Begrenzung des Vorschubs durch Innenanschlag erfolgen.

Der Schließvorgang kann sowohl manuell als auch mit passenden Schließeinrichtungen für ein automatisches Schließen vorgenommen werden.

Gewinderollkopf umlaufend:

Der Adam Gewinderollkopf in der Bauart umlaufend ist für den Einsatz mit stillstehenden Werkstücken konzipiert.

Das Funktionsprinzip der umlaufenden Axial-Rollköpfe ist äquivalent zu dem der stillstehend eingesetzten.

Auch der umlaufende Axial-Rollkopf verfährt solange in geschlossenem Zustand und fertigt Ihr Gewinde, bis entweder der Maschinenvorschub gestoppt wird oder das Werkstück auf den voreingestellten Innenanschlag aufläuft.

Dadurch wird auch der umlaufende Axial-Rollkopf aus seiner Kupplungsstufe gezogen und somit geöffnet!

Dabei drehen sich die Gewinderollen über ihre Exzenter von der Werkstückoberfläche weg.

Der Rollkopf kann gesteuert über die Werkzeugmaschine zurückfahren und das Werkstück verlassen.

Damit der Axial-Rollkopf für den nächsten Rollvorgang bereit ist, muss auch die umlaufende Version wieder geschlossen werden.

Auch hierbei kann dies effektiv und komfortabel mit Hilfe von automatischen Schliesseinrichtungen geschehen.

Deren Funktion wird über die Werkzeugmaschine angesteuert und durch Medien wie Druckluft oder Kühlmittelflüssigkeit mit einem minimalen Betriebsdruck von 2 bar aktiviert. Darin liegt der große Vorteil im Vergleich zu anderen Schließeinrichtungen am Markt.

Die Adam Axial-Rollsysteme sind auf allen gebräuchlichen Werkzeugmaschinen einsetzbar, wie zum Beispiel CNC-Bearbeitungszentren, manuellen Werkzeugmaschinen bis hin zu einfachen Anwendungen auf Standbohrmaschinen und Bohrwerken. Das Rüsten auf Ihrer Werkzeugmaschine ist schnell, einfach und flexibel für alle Einsatzzwecke umsetzbar.

Die Qualität der hergestellten Gewinde sowie die Standzeit der Adam Rollsysteme und der eingesetzten Gewinde- und Profilrollen sind die wesentlichen Argumente gegenüber allen spanend arbeitenden Werkzeugen. Kürzeste Rüst- und Stillstandszeiten Ihrer Werkzeugmaschinen sind die Folge und werden Sie ebenso begeistern wie die schnellen Zykluszeiten während der Herstellung Ihrer Gewinde und Profile. Wir bieten Ihnen zu unseren Adam Rollsystemen auch kostengünstige Schließeinrichtungen, die den Einsatz unserer Adam Rollsysteme auf Ihrer Werkzeugmaschine noch einmal schneller und komfortabler gestalten.

Schaftausführung

Typ A: feststehend verwendbar (z. B. "A 12")

Typ AG: feststehend und umlaufend verwendbar (z. B. "A 12 G"),

für Linksgewinde zusätzlich "L"

(z. B. "A 12 G L")

Flanschausführung

feststehend und umlaufend verwendbar

Schaftausführung

Flanschausführung

Übersicht Axial-Rollsysteme - Typen und Baugrößen

Rollkopfsystem - Größe	Arbeitsb	ereich	D - S	Schaft	D - Ge	häuse
			Durchmess	er - Standard	Durchmesse	r - Standard
	von mm	bis mm	mm	Zoll	mm	Zoll
A 0	2,6	5,5	20	3/4"	50	1,9680
A 001	2,6	4,0	20, 16	3/4"	40	1,5748
A 01	3,5	6,0	20, 16	3/4"	40	1,5748
A 1	6,0	11,0	20, 16	3/4"	64	2,5196
A 12 hrung	6,0	12,0	20, 16	3/4"	64	2,5196
A 1 A 12 A 1223 A 22 Schaftausführung	5,0	8,0	20, 16	3/4"	56	2,2047
A 2 cchafte	8,0	16,0	25	1"	88	3,4645
A 23	8,0	22,0	25	1"	88	3,4645
A 233400	16,0	36,0	30, 25	1", 1.1/4"	96	3,7795
A 3	12,0	22,0	30	1.1/2", 1.1/4"	117	4,6063
A 34	12,0	30,0	30	1.1/2", 1.1/4"	117	4,6063
Rollkopfsystem - Größe	Arbeitsb	ereich	D - F	lansch	D - Fla	ansch
			Durchmess	er - Standard	Durchmesse	r - Standard
	von mm	bis mm	mm	Zoll	mm	Zoll
A 4-1	14	30	140	5,5118	165	6,4960
A 45-1	16	42	140	5,5118	165	6,4960
A 5-1	18	39	200	7,8740	200	7,8740
A 4-1 A 45-1 A 5-1 A 56-1 A 6b-1	22	52	200	7,8740	200	7,8740
A 6b-1	30	45	200	7,8740	255	10,0393

Adam Tangential-Rollsysteme

Die Adam Tangential-Rollsysteme steigern die Wirtschaftlichkeit bei der Gewinde- und Profilherstellung auf CNC-Bearbeitungszentren, auf CNC-Drehmaschinen, aber auch auf allen manuellen Querschlitten-Drehmaschinen.

Die großen Vorteile beim Tangentialrollen sind die Bearbeitung vor und nach einem Bund, zwischen Absätzen und Schultern. Ein weiterer Vorteil ergibt sich bei der Herstellung von Kurzgewinden und Gewinde mit kurzen Gewindeanläufen. Aufgrund der kurzen Zykluszeiten wird Ihre Werkzeugmaschine bestmöglich ausgelastet.

Das Tangentialrollsystem bewegt sich seitlich über das Werkstück und besitzt zwei Gewinderollen. Diese werden satzweise eingesetzt, ein Satz sind zwei Rollen. Hier entfällt der Auslösemechanismus. Die maximal herstellbare Gewindelänge ist begrenzt durch die Rollenbreite.

Adam Rollsysteme Tangentialsystem

TR 20, z. B. mit 2-teiligem Halter für Querschlittenaufnahme

Übersicht Adam Tangential-Rollsysteme – Typen und Baugrößen

Rollkopfsystem - Größe	Arbeitsb	ereich	Rollenbro	eite, max.	Rollkopflänge, min.		
	von mm	bis mm	mm	Zoll	mm	Zoll	
TR10	2	14	15,5	0,6102	104	4,09 44	
TR20	2	30	21,5	0,8464	131	5,1574	
TR30	2	42	31,0	1,2204	168	6,614	

Zu jedem Tangential-Rollsystem ist ein individuell an Ihre Aufnahmesituation angepasster Tangential-Rollkopfhalter erhältlich. Mit diesem wird der Gewinderollkopf auf Ihren Werkzeugmaschinen fixiert.

Ausführungen/Varianten

Rollensätze für Gewinde-Rollsysteme verschiedener Hersteller, zum Beispiel LMT-FETTE, WAGNER, WINTER, REED, etc.

Rollensätze für alle gängigen Gewinde- und Profil-Walzmaschinen.

Gewinde- und Walzrollen

Zu den Adam Rollsystemen liefern wir auch die passenden Gewinde- und Profilrollen. Diese werden kundenspezifisch mittels modernsten Technologien ausgelegt und aus qualitativ hochwertigen Materialien gefertigt.

Die Adam Gewinde- und Walzrollen entstehen auf modernen CNC-gesteuerten Schleifzentren. Seit 1993 ist die Rollenfertigung nach ISO 9001 zertifiziert. Für die Gewinde- und Walzrollen wird eine große Bandbreite von hoch leistungsfähigen Werkstoffen ausschließlich westeuropäischer Hersteller, immer abhängig vom Einsatzfall, verwendet. Die anschließenden Härteprozesse und Randschichtbehandlungen werden in modernsten Vakuum- und Schutzgasofenanlagen prozessgesteuert und in reproduzierbarer Qualität durchgeführt.

Der gesamte Herstellprozess basiert auf langjähriger Erfahrung im Einsatz dieser Rollen für Rollsysteme und Walzmaschinen. Deshalb können die Adam Rollen hervorragende Standzeiten erreichen, die wiederum zu weniger Rüst- und Stillstandszeiten Ihrer Werkzeugmaschinen führen und den Einsatz der Adam Rollsysteme höchst effizient gestalten.

Das Angebotsspektrum umfasst auch Gewinde-, Profil- und Walzrollen für alle am Markt verfügbaren Rollsysteme. Es sind die passenden Walzrollen für alle denkbaren Gewindeformen, -größen und Profilen auf gängigen Walzmaschinen in gewohnter Qualität der Adam Rollen verfügbar.

Die Adam Walzrollen für Roll- und Walzmaschinen sind für Bearbeitungen im Einstichverfahren oder im Durchlaufverfahren einsetzbar. Jeder Satz Adam Walzrollen wird immer entsprechend Ihres Anwendungsfalles ausgelegt und hergestellt. Für Adam Walzrollen bieten wir Ihnen hochpräzise Rolleneinläufe mit Sonderradien in einer Vielzahl von Auslegungen an.

Eingesetzt werden Adam Gewinde- und Walzrollen in den Bereichen der Luft- und Raumfahrt, der automotiven Produktion, dem Motorsport und natürlich im Werkzeug- und Maschinenbau.

Walzrollen

Rollsysteme

Adam Rollsysteme arbeiten werkstoffsparend, teurer Abfall in Form von Spänen fällt nicht an. Mit den Adam Rollsystemen können fast alle Gewindegrößen und -arten in höchster Präzision hergestellt werden. Außerdem können in weiterer Folge Anwendungen wie zum Beispiel Kümpeln, Radien, Rändel und Verzahnungen produziert werden. Die Werkstückoberflächen erhalten eine presspolierte Oberflächenqualität. Die Adam Rollsysteme sind universell einsetzbar, wodurch die Produktivität gesteigert wird.

Auch bei kleineren Losgrößen kommen die Adam Rollsysteme wirtschaftlich zum Einsatz.

Service/Wartung und Reparatur

Zu unserer Serviceleistung gehört eine Analyse des Zustandes Ihrer Rollsysteme und Erstellung eines Kostenvoranschlages. Hierbei werden von uns ausschließlich die benötigten Ersatzteile und der Rücktransport in Rechnung gestellt, die Arbeitszeit ist im kostenlosen Service inkludiert.

Gerne übernehmen wir auch das Service für einen großen Teil der bei Ihnen noch im Einsatz befindlichen Rollsysteme anderer Hersteller.

Technische Daten

Mit dem Adam Gewinderollkopf können alle kaltumformbaren Werkstoffe bearbeitet werden. Die notwendige Dehnung des Werkstoffes ist abhängig von der Größe der Umformung.

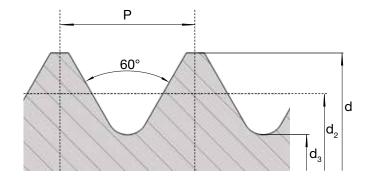
Werkstückvorbereitung:

Der Ausgangsdurchmesser muss in entsprechenden Toleranzen vorbereitet werden (bitte entnehmen Sie die Vordrehdurchmesser aus den nachstehenden Tabellen der Seiten 8 bis 11).

Eine Fase mit einem Faswinkel von ca. 10 - 30° ist erforderlich.

Festigkeit:

Durch die Kaltverfestigung erhöht sich die Festigkeit des Werkstoffes. Der Faserverlauf wird nicht zerstört, wodurch sich eine höhere statische und dynamische Zugfestigkeit ergibt.


Rollgeschwindigkeit:

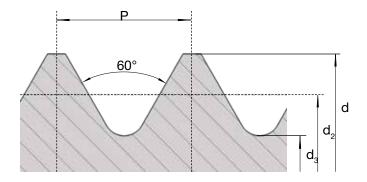
Die Rollgeschwindigkeit beträgt je nach Anwendung und Material von 20 m/min bis 80 m/min (in Ausnahmefällen bis zu 100m/min). Das Gewinde wird in nur einem Durchgang hergestellt (Die Richtwerte für die Rollgeschwindigkeit entnehmen Sie bitte aus der Tabelle der Rollgeschwindigkeiten auf den Seiten 12 und 13.)

Oberflächengüte der Gewindeflanke:

Die erzeugte Oberflächenqualität der Gewindeflanken erfüllt sehr hohe Standards hinsichtlich der Oberflächenbeschaffenheit, da diese prägepoliert ist. Daraus ergibt sich auch eine geringe Korrosionsneigung.

Gewindegrenzmaße und Steigungswinkel für Bolzengewinde siehe DIN 13

d = Bolzen Außen-Ø $d_2 = Bolzen-Flanken-Ø$ $d_3 = Bolzen-Kern-Ø$


Steigungs-∢ β nach Nenndurchmesser d₂

										eranzfel (mm)	der							
G	ωwi	inde-								()								Stei-
Nen		Stei-			4 h					6 ~					6			gungs-
Ø	i	gung	d	ı	4 n	•	d ₃	C	ı	6 g	•	d ₃		1	6 e	2	d ₃	-≰ β
		Р	max.	min.	max.	min.	max.	max.	min.	max.	min.	max.	max.	min.	max.	min.	max.	Deg., min.
М	1,6	x 0,35	1,600	1,547	1,373	1,333	1,170		1,496		1,291	1,151	1,554			1,264	1,124	4° 38'
М	1,8	x 0,35	1,800	1,747	1,573	1,533	1,370	1,781	1,696	1,554	1,491	1,351	1,754	1,669	1,527	1,464	1,324	4° 3'
М	2	x 0,4	2,000	1,940	1,740	1,698	1,509	1,981	1,886	1,721	1,654	1,490	1,952	1,857	1,692	1,625	1,461	4° 11'
М	2,2	x 0,45	2,200	2,137	1,908	1,863	1,648	2,180	2,080	1,888	1,817	1,628	2,152	2,052	1,860	1,789	1,600	4° 17'
М	2,5	x 0,45	2,500	2,437	2,208	2,163	1,948	2,480	2,380	2,188	2,117	1,928	2,452	2,352	2,160	2,089	1,900	3° 42'
М	3	x 0,5	3,000	2,933	2,675	2,627	2,387	2,980	2,874	2,655	2,580	2,367	2,950	2,844	2,625	2,550	2,337	3° 24'
М	3,5	x 0,6	3,500	3,420	3,110	3,057	2,764	3,479	3,354	3,089	3,004	2,743	3,447	3,322	3,057	2,972	2,711	3° 30'
М	4	x 0,7	4,000	3,910	3,545	3,489	3,141	3,978	3,838	3,523	3,433	3,119	3,944	3,804	3,489	3,399	3,085	3° 36'
М	4,5	x 0,75	4,500	4,410	4,013	3,957	3,580	4,478	4,338	3,991	3,901	3,558	4,444	4,304	3,957	3,867	3,524	3° 24'
М	5	x 0,8	5,000	4,905	4,480	4,420	4,019	4,976	4,826	4,456	4,361	3,995	4,940	4,790	4,420	4,325	3,959	3° 15'
М	6	x 1	6,000	5,888	5,350	5,279	4,773	5,974	5,794	5,324	5,212	4,747	5,940	5,760	5,290	5,178	4,713	3° 24'
М	7	x 1	7,000	6,888	6,350	6,279	5,773	6,974	6,794	6,324	6,212	5,747	6,940	6,760	6,290	6,178	5,713	2° 52'
М	8	x 1,25	8,000	7,868	7,188	7,113	6,466	7,972	7,760	7,160	7,042	6,438	7,937	7,725	7,125	7,007	6,403	3° 10'
М	9	x 1,25	9,000	8,868	8,188	8,113	7,466	8,972	8,760	8,160	8,042	7,438	8,937	8,725	8,125	8,007	7,403	2° 46'
M 1	0	x 1,5	10,000	9,850	9,026	8,941	8,160	9,968	9,732	8,994	8,862	8,128	9,933	9,697	8,959	8,827	8,093	3° 1'
M 1	1	x 1,5	11,000	10,850	10,026	9,941	9,160	10,986	10,732	9,994	9,862	9,128	10,933	10,697	9,959	9,827	9,093	2° 43'
M 1	2	x 1,75	12,000	11,830	10,863	10,768	9,853	11,966	11,701	10,829	10,679	9,819	11,929	11,664	10,792	10,642	9,782	2° 56'
M 1	4	x 2	14,000	13,820	12,701	12,601	11,546	13,962	13,682	12,663	12,503	11,508	13,929	13,649	12,630	12,470	11,475	2° 52'
M 1	6	x 2	16,000	15,820	14,701	14,601	13,546	15,962	15,682	14,663	14,503	13,508	15,929	15,649	14,630	14,470	13,475	2° 28'
M 1	8	x 2,5	18,000	17,788	16,376	16,270	14,933	17,958	17,623	16,334	16,164	14,891	17,920	17,585	16,296	16,126	14,853	2° 46'
M 2	0	x 2,5	20,000	19,788	18,367	18,270	16,933	19,958	19,623	18,334	18,164	16,891	19,920	19,585	18,269	18,126	16,853	2° 28'
M 2	2	x 2,5	22,000	21,788	20,376	20,270	18,933	21,958	21,623	20,334	20,164	18,891	21,920	21,585	20,296	20,126	18,853	2° 14'
M 2	4	x 3	24,000	23,764	22,051	21,926	20,319	23,952	23,577	22,003	21,803	20,271	23,915	23,540	21,996	21,766	20,234	2° 28'
M 2	7	x 3	27,000	26,764	25,051	24,926	23,319	26,952	26,577	25,003	24,803	23,271	26,915	26,540	24,966	24,766	23,234	2° 10'
М 3	0	x 3,5	30,000	29,735	27,727	27,595	25,706	29,947	29,522	27,674	27,462	25,653	29,910	29,485	27,637	27,425	25,616	2° 18'
М 3	3	x 3,5	33,000	32,735	30,727	30,595	28,706	32,947	32,522	30,674	30,462	28,653	32,910	32,485	30,637	30,425	28,616	2° 4'
М 3	6	x 4	36,000	35,700	33,402	33,262	31,093	35,940	35,465	33,342	33,118	31,033	35,905	35,430	33,307	33,083	30,998	2° 11'
М 3	9	x 4	39,000	38,700	36,402	36,262	34,093	38,940	38,465	36,342	36,118	34,033	38,905	38,430	36,307	36,083	33,988	2°
M 4	2	x 4,5	42,000	41,685	39,077	38,927	36,479	41,937	41,437	39,014	38,778	36,416	41,900	41,400	38,977	38,741	36,379	2° 6'
M 4	5	x 4,5	45,000	44,685	42,077	41,927	39,479	44,397	44,437	42,014	41,778	39,416	44,900	44,400	41,977	41,741	39,379	1° 57'
M 4	8	x 5	48,000	47,665	44,752	44,592	41,866	47,929	47,399	44,681	44,431	41,795	47,894	47,364	44,646	44,396	41,790	2° 2'
M 5	2	x 5	52,000	51,665	48,752	48,592	45,866	51,929	51,399	48,681	48,431	45,795	51,894	51,364	48,646	48,396	45,760	1° 52'
M 5	6	x 5,5	56,000	55,645	52,428	52,258	49,252	55,925	55,365	52,353	52,088	49,177	55,888	55,328	52,316	52,051	49,140	1° 54'
M 6	0	x 5,5	60,000	59,645	56,428	56,258	53,252	59,925	59,365	56,353	56,088	53,177	59,888	59,328	56,316	56,051	53,140	1° 46'
M 6	4	x 6	64,000	63,625	60,103	59,923	56,639	63,920	63,320	60,023	59,743	56,559	63,882	63,282	59,985	59,705	56,521	1° 49'
M 6	8	x 6	68,000	67,625	64,103	63,923	60,639	67,920	67,320	64,023	64,743	60,559	67,882	67,282	63,985	63,705	60,521	1° 42'

Metrische ISO-Feingewinde

Gewindegrenzmaße und Steigungswinkel für Bolzengewinde siehe DIN 13


d = Bolzen Außen-Ø $d_2 = Bolzen-Flanken-Ø$ $d_3 = Bolzen-Kern-Ø$

Steigungs-∢ β nach Nenndurchmesser d₂

			Toleranzfelder (mm)														
									(·····)								Stei-
Gewi																	gungs-
Nenn-	Stei-			4 h					6 g					6 e			≮
Ø	gung	d			2	d ₃		k	d		d ₃	C		d		d ₃	β.
	Р	max.	min.	max.		max.	max.	min.	max.	min.	max.	max.	min.	max.	min.	max.	Deg., min.
	5 x 0,35	2,500	2,447	2,273					2,254	2,191	2,051	2,454			2,164	2,024	2° 48'
MF 3	x 0,35	3,000	,	2,773	-	2,570	,	-	2,754	2,687	2,551	2,954		-	-		
	5 x 0,35	3,500	3,447	3,273	-	3,070	-	-	3,254	3,187	3,051	3,454		-	3,160	,	
MF 4	x 0,5	4,000	3,933	3,675	- 1	3,387	3,980		3,655	3,580	3,367	3,950	3,844		3,550	3,337	2° 28'
	5 x 0,5	4,500	4,433	4,175		3,887	4,480	-	4,155	4,080	3,867	4,450	4,344		4,050	3,837	2° 10'
MF 5	x 0,5	5,000	4,933	,		4,387	4,980	,		4,580	4,367	4,950		,		4,337	1° 57' 1° 45'
	5 x 0,5	5,500 6,000			- 1	4,887 5,387	-			5,080 5,570	4,867 5,367	5,450 5,950				4,837 5,337	1° 45'
MF 6	x 0,5 x 0,75	6,000	5,933 5,910	,	-	5,080	,		5,655 5,491	5,391	5,058	5,950		-	5,357	5,024	
MF 7	x 0,75	7,000	6,910	,	-			,	6,491	6,391	6,058	,			6,357	6,024	
MF 8	x 0,75	8.000	7,910			7.080	-		7,491	7,391	7,058	7.944	7,804		7.357	7.024	
MF 8	x 1	8,000	7,888	7,313		6,773		- 1	7,324	7,212	6,747	7,944	7,760		7,178	6,713	
MF 9	x 0,75	9,000	8,910	,	-				-	8,391	8,058	,			8,357	8,024	1° 36'
MF 9	x 1	9,000	8,888	- '		7,773	-		8,324	8,212	7,747	8,940			-	7,713	
MF 10		10,000	9,910						9,491	9,391	9,058				9,357	9,024	
MF 10	x 1	10,000	9.888						- 1	9,212	8,747	9,940			,	,	
MF 10		10,000	-,	-,			9,972		9,160	-	8,438					8,403	2° 28'
MF 11		11,000			-		,	-	-		,				-		1° 18'
MF 11	x 1							10,794									1° 45'
MF 12		12,000															
MF 12	x 1							11,794		- '							
MF 12	x 1.25	12,000								-							
MF 12	x 1,5							11,732									2° 28'
MF 14	x 1	-			-		,	13,794	-		,				-		1° 22'
MF 14	x 1,5							13,732									2° 6'
MF 16	x 1	16,000	15,888	15,350	15,275	14,773	15,974	15,794	15,324	15,206	14,747	15,940	15,760	15,290	15,172	14,713	1° 11'
MF 16	x 1,5	16,000	15,850	15,026	14,936	14,160	15,968	15,732	14,994	14,854	14,128	15,933	15,697	14,959	14,819	14,093	1° 49'
MF 18	x 1	18,000	17,888	17,350	17,275	16,773	17,974	17,794	17,324	17,206	16,747	17,940	17,760	17,290	17,172	16,713	1° 3'
MF 18	x 1,5	18,000	17,850	17,026	16,936	16,160	17,968	17,732	16,994	16,854	16,128	17,933	17,697	16,959	16,819	16,093	1° 36'
MF 18	x 2	18,000	17,820	16,701	16,601	15,546	17,962	17,682	16,663	16,503	15,508	17,929	17,649	16,630	16,470	15,475	2° 10'
MF 20	x 1	20,000	19,888	19,350	19,275	18,773	19,974	19,794	19,324	19,206	18,747	19,940	19,760	19,290	19,172	18,713	0° 56'
MF 20	x 1,5	20,000	19,850	19,026	18,936	18,160	19,968	19,732	18,994	18,854	18,128	19,933	19,697	18,959	18,819	18,093	1° 26'
MF 20	x 2	20,000	19,820	18,701	18,601	17,546	19,962	19,682	18,663	18,503	17,508	19,929	19,649	18,630	18,470	17,475	1° 57'
MF 22	x 1	22,000	21,888	21,350	21,275	20,773	21,974	21,794	21,324	21,206	20,747	21,940	21,760	21,290	21,172	20,713	0° 51'
MF 22	x 1,5	22,000	21,850	21,026	20,936	20,160	21,968	21,732	20,994	20,854	20,128	21,933	21,697	20,959	20,819	20,093	1° 18'
MF 22	x 2	22,000	21,820	20,701	20,601	19,546	21,962	21,682	20,663	20,503	19,508	21,929	21,649	20,630	20,470	19,475	1° 45'

								Tole	eranzfe	lder							
									(mm)								Cta:
Gew	inde-																Stei- gungs-
Nenn-	Stei-			4 h					6 g					6 e			↓
Ø	gung	d			2	d ₃	(d		l ₂	d ₃	(d		d ₂	d ₃	β
	P	max.	min.	max.	min.	_	max.	min.	max.		_	max.	min.	max.	min.	max.	Deg., min
MF 24	x 1	24,000	23,888	23,350	23,270	22,773	23,974	23,794	23,324	23,199	22,747	23,940	23,760	23,290	23,165	22,713	0° 47'
MF 24	x 1,5	24,000	23,850	23,026	22,931	22,160	23,968	23,732	22,994	22,844	22,128	23,933	23,697	22,959	22,809	22,093	1° 11'
MF 24		24,000	-	-	-	-	-	-	-	-	-	· ·	-	-	-	-	1° 36'
MF 27		27,000		-	-					-	-		-	-	-	-	
MF 27		27,000						· ·		-			-	-		<u> </u>	
MF 27		27,000			-					-		-	-	-	-		1° 25'
MF 30 MF 30		30,000 2		-	-		-	· ·		-		-	-	-		<u> </u>	0° 37'
MF 30		30,000 2		-		-			-								1° 16'
MF 30		30,000 2															
MF 33		33,000															0° 51'
MF 33		33,000							_	_			_				1° 9'
MF 33		33,000	,	-	-	-	-	-	-	-	,	-	-	-			1° 45'
MF 36		36,000		-		-		-	-	-	-		-	-	-		
MF 36	x 2	36,000	35,820	34,701	34,595	33,546	35,962	35,682	34,663	34,493	33,508	35,929	35,649	34,630	34,460	33,475	1° 3'
MF 36	x 3	36,000	35,764	34,051	33,926	32,319	35,952	35,577	34,003	33,803	32,271	35,915	35,540	33,966	33,766	32,234	1° 36'
MF 39	x 1,5	39,000	38,850	38,026	37,931	37,160	38,968	38,732	37,994	37,844	37,128	38,933	38,697	37,959	37,809	37,092	0° 43'
MF 39	x 2	39,000	38,820	37,701	37,595	36,546	38,962	38,682	37,663	37,493	36,508	38,929	38,649	37,630	37,460	36,475	0° 58'
MF 39		39,000		-	-	-	-	-	-			-	-	-	-		1° 28'
MF 42		42,000		-	-			-		-	-		-	-	-		0° 40'
MF 42		42,000		-	-		-	-		-		-	-	-			0° 53'
MF 42		42,000														_	
MF 42	-	42,000			-					-			· ·	-		<u> </u>	1° 51'
MF 45		45,000		-	-	-	-	-		-		-	-	-			
MF 45		45,000		-	-			-		-			-	-		 	0° 50'
MF 45 MF 45		45,000 4 45,000 4				-	-		-			-					1° 16' 1° 43'
MF 48		48,000														_	0° 35'
MF 48		48,000				-			-			-					0° 47'
MF 48		48,000	-	-		-	-	-	-	-	-	-	-	-	<u> </u>	- '	1° 11'
MF 48		48,000		-		-			-	-	-		-		-		1° 36'
MF 52		52,000		-		-			-								0° 32'
MF 52		52,000														_	0° 43'
MF 52	x 3	52,000	51,764	50,051	49,919	48,319	51,952	51,577	50,003	49,791	48,271	51,915	51,540	49,966	49,754	48,234	1° 5'
MF 52	x 4	52,000	51,700	49,402	49,252	47,093	51,940	51,465	48,342	49,106	47,033	51,905	51,430	49,307	49,071	46,998	1° 28'
MF 56	x 1,5	56,000	,	-			-	-	-	-	,			-			
MF 56		56,000		-	-		-	-	-			-	-	-	-		
MF 56		56,000		-		-		-		-	-		-	-	-		
MF 56		56,000		-	-	-	-		-	-		-	-	-	-		
MF 60		60,000								_							
MF 60		60,000		-		-		-	-	-	-		-	-	-		
MF 60		60,000															
MF 60 MF 64		60,000 8	,	-	-		-	-		-	,	-	-	-			
MF 64		64,000		-		-		-	-	-	-		-	-	-		
MF 64		64,000															
MF 68		68,000	-	-		-		-	-	-	-	· ·	-	-	-	-	
MF 68		68,000		-			-	-		-		-	-	-			
MF 68		68,000		-	-	-			-	-	-	-	-		-		
MF 72		72,000	-	-		-	-	-		-	-	· ·	-	-	-	-	
MF 72		72,000															
MF 72		72,000		-		-		-	-	-	-		-	-	-		
MF 72				-		-	-	-		-		-	-	-		64,521	

Bezeichnungsbeispiel für Bolzengewinde (Toleranz mitte): M 16 - 6g Bezeichnungsbeispiel für Bolzen-Linksgewinde (Toleranz mitte): M 16 - 6g-LH

		Toleranzfelder (mm)															
									(mm)								Stei-
Gewi	nde-																gungs-
Nenn-	Stei-			4 h					6 g					6 e			≮
Ø	gung	d	1	d		d ₃		. t	d		d ₃		. t	1	l2 .	d ₃	β
MF 76	P	max.	min.	max.	min.	max.		min.	max. 74,003	min.	max.			72 066		max.	Deg., min.
MF 76									73,342								-
MF 76				,	,			-	72,023		-	-	-		-	-	
MF 80		-				-	-	-	78,663		-	-			-		
MF 80) x 3	80,000	79,764	78,051	77,919	76,319	79,952	79,577	78,003	77,791	76,271	79,915	79,540	77,966	77,754	76,234	0° 42'
MF 80		80,000	79,700	77,402	77,252	75,093	79,940	79,465	77,342	77,106	75,033	79,905	79,430	77,307	77,071	74,998	0° 56'
MF 80		-	-	-		-	-		76,023		-	-	-		-	-	
MF 85									83,663								
MF 85		-						-	83,003		-	-		 	· ·		
MF 85			_	-	-				82,342		_	_	_	_	_	-	
MF 85									81,023								
MF 90		-	-	-		-	-		88,663 88,003		-	-	-		-	-	
MF 90									87,243								
MF 90		-	-	-	-	-	-		86,023		-	-	-		-	-	
MF 95									93,663								
MF 95		-		,				-	93,003		-	-	,		-		
MF 95									92,342								
MF 95	5 x 6	95,000	94,625	91,103	90,913	87,639	94,920	94,320	91,023	90,723	87,559	94,882	94,282	90,985	90,685	87,521	1° 12'
MF 100	0 x 2	100,000	99,820	98,701	98,583	97,546	99,962	99,682	98,663	98,473	97,508	99,929	99,649	98,630	98,440	97,475	0° 23'
MF 100	0 x 3	100,000	99,764	98,051	97,911	96,319	99,952	99,577	98,003	97,779	96,271	99,915	99,540	97,966	97,742	96,234	0° 53'
MF 100		100,000	-	-		-	-		-		-	-	-		-	-	
MF 100	0 x 6	100,000	99,625	96,103	95,913	92,639	99,920	99,320	96,023	95,723	92,559	99,882	99,282	95,985	95,685	95,521	1° 8'

				ı	Rollgesch	windigkei	ten m/mi	n			
Ausgangsdurchmesser	20	25	30	35	40	50	60	70	80	90	100
					Werkstü	ckdrehzah	nl in min ⁻¹				
1	6400	8000	9600	11150	12750	16000	19200	22300	25500	29000	32000
2	3200	4000	4800	5600	6400	8000	9600	11200	12800	14400	16000
3	2150	2700	3200	3750	4250	5350	6400	7500	8500	9600	10650
4	1600	2000	2400	2800	3200	4000	4800	5600	6400	7200	8000
5	1300	1600	1950	2250	2600	3250	3900	4500	5150	5800	6420
6	1100	1330	1600	1875	2150	2700	3200	3750	4300	4800	5350
7	950	1150	1400	1600	1850	2300	2750	3200	3650	4120	4600
8	800	1000	1200	1400	1600	2000	2400	2800	3200	3600	4000
9	720	900	1100	1250	1450	1800	2150	2500	2850	3200	3550
10	640	800	1000	1200	1300	1600	1950	2250	2600	2900	3200
12	540	700	800	950	1100	1350	1600	1900	2150	2430	2700
14	450	600	700	800	950	1150	1400	1600	1850	2100	2300
15	430	550	650	750	875	1100	1300	1500	1720	1950	2150
16	410	510	600	700	800	1000	1200	1400	1600	1800	2000
18	369	450	540	630	720	910	1100	1270	1445	1600	1800
20	320	400	485	560	640	800	800	1130	1300	1450	1620
22	300	375	450	520	600	740	900	1050	1200	1320	1470
24	270	350	420	470	540	675	800	950	1100	1200	1350
25	260	330	400	460	520	640	775	900	1050	1170	1300
26	250	315	390	450	510	630	750	870	1000	1125	1250
28	230	300	350	415	470	590	700	800	920	1030	1150
30	220	270	340	380	435	540	640	760	875	970	1090
32	210	260	320	364	425	530	615	720	800	910	1000
34	190	240	295	340	385	480	570	665	760	855	950
35	185	230	280	330	375	465	550	640	740	835	935
36	180	225	270	315	360	450	540	630	710	800	900
38	170	210	260	300	340	430	510	590	680	760	850
40	160	200	240	285	325	410	485	560	640	720	800
45	145	180	215	255	290	365	435	510	580	650	715
50	130	160	195	225	260	325	390	450	520	590	650
55	120	150	175	205	235	295	350	410	470	530	590
60	110	135	160	190	215	270	325	375	435	490	540
65	100	125	130	175	200	255	305	350	400	450	500
70	95	115	140	160	185	230	275	325	370	420	465
75	90	110	130	150	175	215	260	310	350	390	435
80	85	105	125	145	160	205	250	290	330	370	410
85	80	100	115	135	155	190	230	265	310	340	380
90	75	90	110	125	145	180	215	255	290	325	365
100	70	85	100	115	130	160	195	225	260	300	325

Rollgeschwindigkeiten

Allgemein gilt:

- Sogenannte Spitzgewinde lassen sich mit höherer Rollgeschwindigkeit herstellen als Trapezgewinde.
- Bei höherer Dehnung σ ist die Rollgeschwindigkeit höher als bei Werkstoffen mit kleiner Dehnung σ.
- Werkstoffe mit höherer Festigkeit müssen mit geringerer Rollgeschwindigkeit gerollt werden.
- Bei Spitzgewinden empfehlen wir als Richtwert 20 80 m/min, für Trapez- und ähnliche Gewinde ca. 15 30 m/min.

Formel für die Rollgeschwindigkeit:

$$V = \frac{d_2 \cdot \pi \cdot n}{1000} \text{ [m/min]}$$

 $\begin{array}{ll} \mbox{Rechenbeispiel:} & \mbox{M 10 x 1,5 (6 g)} \\ \mbox{Ausgangs-\varnothing (Flanken-\varnothing)} & \mbox{d}_2 = 8,99 \mbox{ mm} \\ \mbox{Werkstückdrehzahl} & \mbox{n = 1800 U/mir} \\ \end{array}$

$$V = \frac{8,99 \cdot \pi \cdot 1800}{1000} \text{ [m/min]}$$

V = 50,84 m/min

Formel für die Drehzahl:

$$n = \frac{1000 \cdot V}{d_2 \cdot \pi} [min^{-1}]$$

 $\begin{array}{ll} \mbox{Rechenbeispiel:} & \mbox{M 10 x 1,5 (6 g)} \\ \mbox{Ausgangs-\emptyset (Flanken-\emptyset)} & \mbox{d}_2 = 8,99 \mbox{ mm} \\ \mbox{Rollgeschwindigkeit} & \mbox{V} = 51 \mbox{ m/min} \\ \end{array}$

$$n = \frac{1000 \cdot 51}{8,99 \cdot \pi} \text{ [min}^{-1}\text{]}$$

n = 1805,76 min⁻¹

Grundsätzlich lassen sich Werkstoffe ab einer Mindestdehnung von ca. 5% und einer Zugfestigkeit bis etwa 1400 N/mm² umformen. Rollbar sind Bau-, Einsatz-, Vergütungs- und rostfreie Stähle, sowie ferritische Gusssorten und Buntmetalle.

Tabellenwerte

Im Einzelfall entnehmen Sie bitte die Informationen aus nachfolgender Tabelle.

Die Tabellenwerte sind Richtwerte, die je nach Rollkopftyp, Materialgüte und Maschinenbedingungen abweichen können.

Sollten Sie zur Klärung eine technische Unterstützung benötigen, kontaktieren Sie bitte Ihren zuständigen Kundenberater der Firma Boehlerit.

Werkstoffe	Werkstoff DIN	Werkstoff Nr.	Festigkeit N/mm²	Härte Brinell (HB)	Dehnung σ min. 5 %	Rollbarkeit	Rollgeschwindigkeit m/min.
Eisenmetalle							
Allgemeine	ST 37	1.0120	500	150	28	•••	40 - 80
Baustähle	ST 50	1.0531	500 - 600	150 - 190	22	•••	30 - 60
	ST 60	1.0540	500 - 600	190 - 250	15	•••	20 - 50
	CK 45	1.1191	650 - 850	200 - 250	15	•••	20 - 50
Einsatzstähle	C 15 E	1.1141	500	150	16	•••	40 - 70
	16 MNCr 5	1.7131	500 - 850	150 - 200	10	••	30 - 50
Nitrierstähle	34 CrAl 6	1.8504	1000	290	14	••	20 - 50
	31 CrMo V 9	1.8519	1000 - 1300	290 - 380	11	••	20 - 40
Automaten-	9 S 20	1.0711	360	160	25	•••	30 - 60
stähle	9 S Mn Pb 28	1.0718	380	170	23	•••	30 - 60
	35 S 20	1.0726	500 600	190	18	•••	30 - 60
Vergütungs-	C 35	1.0501	700	200	18	•••	40 - 70
stähle	CK 60	1.1221	700 - 900	200 - 260	14	••	30 - 60
	42 CrMo 4	1.7225	900 - 1200	260 - 350	11	••	20 - 50
	30 CrMo V 9	1.7707	1200 - 1400	350 - 400	9	•	20 - 40
	34 CrNiMo 6	1.6582	1000 - 1400	350	9	•	20 - 40
Federstähle	50 CrV 4	1.8159	900 - 1000	250	10	•	20 - 40

Rollbarkeiten:

••• gut rollbar

•• rollbar

bedingt rollbar

Werkstoffe	Werkstoff	Werkstoff	Festigkeit	Härte	Dehnung	Rollbarkeit	Rollgeschwindigkeit
	DIN	Nr.	N/mm²	Brinell (HB)	σ min. 5 %		m/min.
Eisenmetalle							
Werkzeug-	X 210 Cr 12	1.2080	800	230		••	30 - 50
stähle	X 130 W 5	1.2453	800 - 1000	230 - 290	9	••	20 - 40
	115 CrV 3	1.2210	600 - 700	220	10	••	30 - 50
Schnellstähle	S 6-5-2 (DM 05)	1.3343	850 - 900	240 - 300		•	20 - 40
	S 6-5-2-5 (E Mo 5 Co5)	1.3243	850 - 900	240 - 300		•	20 - 40
Rost-, Säure-,	X 10 Cr 13	1.4006	550 - 650	200 - 250	18	••	30 - 50
Hitzebestän- dige Stähle	X 22 CrNi 17	1.4057	800 - 900	250 - 320	12	••	30 - 50
aige otariie	X 12 CrMoS 17	1.4104	500 - 800	200 - 250	20	••	30 - 50
	X 5 CrNi 1810	1.4301	500 - 700	200 - 250	50	•••	35 - 55
	X 10 CrNiS 189	1.4305	500 - 700	200 - 250	50	•••	35 - 55
	X5CrNiMo 17122	1.4401	500 - 700	200 - 250	30	••	30 - 50
	X6CrNiMoTi 17122	1.4571	500 - 700	200 - 250	40	••	30 - 50
Stahlguss	GS 38	1.0416	500	150	20	•••	40 - 60
	GS 36 Mn 5	1.5067	500 - 600	150 - 200	17	•••	40 - 60
	GS 50 CrMo 4	1.7228	650	200	11	••	30 - 50
Temperguss	GTS 45		450 - 500	150 - 200	6	••	30 - 60
	GTS 65		600 - 700	210 - 250	6	••	30 - 60
Grauguss	GGG 40	0.7040	400 - 500	140 - 180	27 - 15	•••	30 - 60
	GGG 50	0.7050	500 - 600	180 - 210	12	••	30 - 50
	GGG 60	0.7060	600 - 750	210 - 250	8	••	30-50
Hochwarm- feste Werk-	NiCr 20 Co 19	Nimonic 263	540 - 700	160 - 200		••	30 - 50
stoffe	NiCr 17 Mo 17 FeW	Hasteloy	700 - 900	200 - 260		••	20 - 40
Nickellegie- rung		Inconell 600	900 - 1100	260 - 330		•	20 - 40
Nichteisenmet	:alle						
Kupfer	C-CU (F 20)	2.0120	ca. 200	40 - 65	ca. 30	•••	40 - 100
	E-Cu (F 25)	2.0060	250	65 - 90	ca. 8	•••	40 - 80
Kupfer	MS 63 (F 30)	2.0320.10	300	ca. 70	40	•••	40 - 80
Knetlegierung	MS 60 Pb (F 41)	2.0370.26	400	ca. 100	15	••	40 - 70
(Messing)	MS 60 Pb (F 35)	2.0372.10	340	ca. 90	35	•••	40 - 70
	MS 58 F 44	2.0380.26	430	ca. 125	19	••	40 - 70
	M 58 F 44	2.0401.10	430	ca. 125	19	••	40 - 70
Zinklegierung	ZnCu 1	3.3525	180 - 200	40 - 60	15-4	•••	40 - 70
Aluminium	AlMg 2	3.2315	150 - 210	40 - 60	15-4	•••	40 - 70
Knetlegierun-	AlMgSi 1	3.4355	200 - 320	60 - 95	14-9	••	40 - 70
gen	AlZnMg 3	3.1355	400 - 450	105 - 125	10-5	•	30 - 50
	AlCuMg 2	3.4365	450	115	9	••	30 - 50
	AlZnMgCu 1,5	3.7035	530 - 540	140	7	••	30 - 50
Titanlegierun-	Ti 99,7	3.7124	290 - 550	85 - 160	ca. 22	•••	30 - 60
gen	TiCu 2,5	3.7115	550 - 750	160 - 220	ca. 20	•••	30 - 60
	TiAl 15 Sn 2	3.7164.7	750 - 950	220 - 280	ca. 10	••	30 - 60
	TiAl 7 Mo	3.7 13 1.7	1030 - 1100		Ju. 10	••	20 - 40

BOEHLERIT GmbH & Co. KG

Werk VI-Strasse 100 8605 Kapfenberg Österreich/Austria Telefon +43 3862 300 - 0 Telefax +43 3862 300 - 793 info@boehlerit.com www.boehlerit.com

Brasilien/Brazil

Boehlerit Brasil Ferramentas Ltda. Rua Capricórnio 72 Alpha Conde Comercial I 06473-005 - Barueri -São Paulo Telefon +55 11 554 60 755 Telefax +55 11 554 60 476 info@boehlerit.com.br www.boehlerit.com

Italien/Italy

Boehlerit Italy S.r.I. Via Papa Giovanni XXIII, Nr. 45 20090 Rodano (MI) Telefon +39 02 269 49 71 Telefax +39 02 218 72 456 info@boehlerit.it www.boehlerit.com

Mexiko/Mexico

Boehlerit S.A. de C.V. Av. Acueducto No. 15 Parque Industrial Bernardo Quintana El Marqués, Querétaro México. C.P. 76246 Telefon +52 442 221 5706 Telefax +52 442 221 5555 info@boehlerit.com.mx www.boehlerit.com

Singapur/Singapore

Boehlerit Asia Pte Ltd 1 Clementi Loop 04-01 Clementi West District Park Singapore 12 98 08 Telefon +65 64 62 1608 Telefax +65 64 62 4215 info@boehleritasia.com www.boehlerit.com

Slowakei/Slovakia Werk VI-Strasse 100 8605 Kapfenberg Österreich/Austria Telefon +421 910 998 641 Telefax +421 42 444 3272 boehlerit@boehlerit.sk www.boehlerit.sk www.boehlerit.com

Spanien/Spain

Boehlerit Spain S.L. C/. Narcis Monturiol 11-15 08339 Vilassar de Dalt Barcelona Telefon +34 93 750 7907 Telefax +34 93 750 7925 info@boehlerit.es www.boehlerit.com

Tschechien/

Czech Republic Kancelár Boehlerit Santraziny 753 760 01 Zlín Telefon +420 577 214 989 Telefax +420 577 219 061 boehlerit@boehlerit.cz www.boehlerit.cz www.boehlerit.com

Türkei/Turkey

Boehlerit Sert Metal ve Takım San. ve Tic. A.Ş. Gebze Organize Sanayi Bölgesi 1600. Sk.No: 1602 41480 Gebze – Kocaeli Telefon +90 262 677 1737 Telefax +90 262 677 1746 bohler@bohler.com.tr www.bohler.com.tr www.boehlerit.com

Ungarn/Hungary

Boehlerit Hungária Kft. PO Box: 2036 Érdliget Pf. 32 2030-Érd, Kis-Duna u.6. Telefon +36 23 521 910 Telefax +36 23 521 919 info@boehlerit.hu www.boehlerit.com